

αRD139A Integrated Circuits, Silicon Monolithic, Low Power, Low Offset Quad, Bipolar Voltage Comparator αRD139A

General Description

The **\alphaRD139A** series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mV max for all four comparators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage. Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The **\alphaRD139A** series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logic— where the low power drain of the α RD139A is a distinct advantage over standard comparators.

The α RD139A device is characterized for operation over the full temperature range of -55°C to +125°C.

Features

- Available With Radiation Ensured
- Total Ionizing Dose 100 krad(Si), dose rate = 36 360rads(Si)/h
- Wide Supply Voltage Range α RD139A: 2 to 36 Vbc or ±1 to ±18 Vbc
- Very Low Supply Current Drain (0.8 mA) (Typical) Independent of Supply Voltage
- Low Input Biasing Current: 25 nA (Typical)
- Low Input Offset Current: ±5 nA (Typical)
- Offset Voltage: ±1 mV (Typical)
- Input Common-mode Voltage Range Includes GND
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage: ±36 V
- Low Output Saturation Voltage: 250 mV at 4 mA (Typical)
- Output Voltage Compatible with TTL, DTL, ECL, MOS and CMOS Logic Systems

Advantages

- High Precision Comparators
- Reduced Vos Drift Over Temperature
- Eliminates Need for Dual Supplies
- Allows Sensing Near GND
- Compatible with all Forms of Logic
- Power Drain Suitable for Battery Operation

Ordering information

Ordering information							
Part	Temp. range, °C			Burn-In case temp, °C	Burn-In time, hrs		
αRD139A	-55 to +125	14-lead ceramic flatpack	Figure 3	+125	240		

Tabla 1

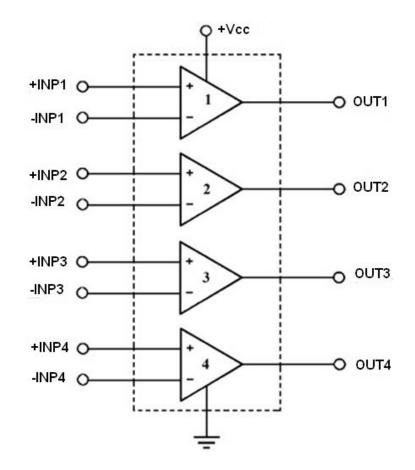

Pin Function Description

Table 2

Description	Mnemonic	Pin No
Output 2	OUT 2	1 (Mark)
Output 1	OUT 1	2
Positive Supply	Vcc	3
Negative Input 1	-IN 1	4
Positive Input 1	+IN 1	5
Negative Input 2	-IN 2	6
Positive Input 2	+IN 2	7
Negative Input 3	-IN 3	8
Positive Input 3	+IN 3	9
Negative Input 4	-IN 4	10
Positive Input 4	+IN 4	11
GND (-Vcc)	GND (-Vcc)	12
Output 4	OUT 4	13
Output 3	OUT 3	14

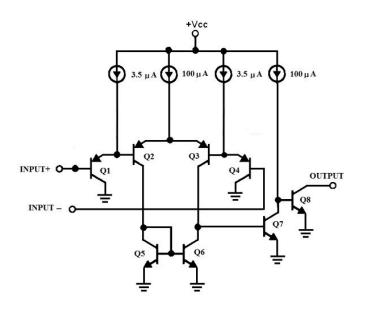

Functional Diagram

Figure 1

Circuit Schematic

Repeated 4 times

Table 3

Absolute maximum ratings

No.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	REMARKS
1	Supply Voltage	Vcc	36 V or <u>+</u> 18 V	
2	Differential Input Voltage	V _{ID}	36 V	Note 2
3	Input Voltage	V _{IN}	(-Vcc-0.3V) to +Vcc	
4	Input Current (V _{IN} < - Vcc - 0.3V)	II	±50 mA	Note 3
5	Thermal Resistance: Junction – Ambient Junction - Case	$ \begin{array}{c} \theta_{JA} \\ \theta_{JC} \end{array} $	115 °C/W 28 °C/W	
6	Power Dissipation	P _D	670 mW	Note 4, 5
7	Output Short- Circuit to GND	-	Continuous	Note 6
8	Operating Temperature Range	T _A	-55 °C to +125 °C	
9	Storage Temperature Range	T _A	- 65 °C to + 150 °C	
10	Maximum Junction Temperature	Tj	150 °C	
11	Lead Temperature (Soldering, 10 s)	Tsol	300 °C	
12	Sink current	Isink	20 mA	
13	ESD Rating		600 V	Note 7

aRD139A

Notes:

- 1. Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- 2. Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3 V or 0.3 V below the magnitude of negative power supply, if used (at 25 °C).
- 3. This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the Vcc voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V (at 25 °C).
- 4. The low bias dissipation and the ON-OFF characteristics of the outputs keeps the chip dissipation very small $(P_D \le 100 \text{ mW})$, provided the output transistors are allowed to saturate.
- 5. The maximum power dissipation must be derated at elevated temperatures and is dictate by T_{jmax} (Maximum Junction Temperature) θ_{JA} (Package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax}=(T_{jmax}-T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.
- 6. Short circuits from the output to Vcc can cause excessive heating and eventual destruction. When considering short circuits to ground (-Vcc), the maximum output current is approximately 20 mA independent of the magnitude of Vcc
- 7. Human body model, $1.5 \text{ k}\Omega$ in series with 100 pF.

Electrical DC characteristics within operating temperature range

The following conditions apply, unless otherwise specified +Vcc = +5V, -Vcc = 0V, +Vin = 0V

Notes (1) (2) Table 3

Parameter	Symbol	Test Method	Method		T _A , °C	Limits		Units
	~ 5	MIL-STD 883				Min	Max	
Input	V _{IO}	4001	$+V_{CC} = +30V, -V_{CC} = 0V, V_L = +30V,$		+22±3	-2	2	mV
Offset Voltage			$V_T\!=\!+1.5V,\ R_L=15k\!\Omega$		+125(+0-3)	-4	4	
voltage					-55(+5-0)	-4	4	
				R	+22±3	-4	4	
			$+V_{CC} = +1.5V, -V_{CC} = -28.5V, V_{L} = +1.5V,$	•	+22±3	-2	2	
			$V_T \!=\! -27 V, \ R_L = 15 k \Omega$					
				R	+22±3	-4	4	
			$+V_{CC} = +2V, -V_{CC} = -28V, V_L = +2V,$		+22±3	-2	2	
			V 04 5V D 151/0		+125(+0-3)	-4	4	
			$V_T = -26.5V, R_L = 15k\Omega$	R	-55(+5-0) +22±3	-4	4	
			$+V_{CC} = +5V, -V_{CC} = 0V, V_L = +5V,$	К	$+22\pm3$ +22\pm3	-4 -2	4	
			$+v_{CC} = +5v, -v_{CC} = 0v, v_L = +5v,$ $V_T = +1.5V, R_L = 15k\Omega$		$+22\pm 3$ +125(+0-3)	-2	4	
					-55(+5-0)	-4	4	
				R	$+22\pm3$	-4	4	
			$+V_{CC} = +2V, -V_{CC} = -3V, V_L = +2V,$		+22±3	-2	2	
			$V_T = -1.5V, \ R_L = 15 k\Omega$		+125(+0-3)	-4	4	
					-55(+5-0)	-4	4	
				R	+22±3	-4	4	
Input Bias	$\pm I_{IB}$	4001	$+V_{CC} = 30V, -V_{CC} = 0V, V_L = +30V,$		+22±3	-100	1	nA
Current			$V_T\!=\!+1.5V,\ R_L=15k\!\Omega$		+125(+0-3)	-300	1	
					-55(+5-0)	-300	1	
				R	+22±3	-110	1	
			$+V_{CC} = 2V, -V_{CC} = -28V, V_L = +2V,$		+22±3	-100	1	
			$V_T = -26.5 V, \ R_L = 15 k\Omega$		+125(+0-3)	-300	1	
					-55(+5-0)	-300	1	
				R	+22±3	-110	1	
			$+V_{CC} = +5V, -V_{CC} = 0V, V_L = +5V,$		+22±3	-100	1	
			$V_T = +1.5V, R_L = 15k\Omega$		+125(+0-3)	-300	1	
					-55(+5-0)	-300	1	
				R	+22±3	-110	1	
			$+V_{CC} = +2V, -V_{CC} = -3V, V_L = +2V,$	1	+22±3	-100	1	
			$V_{\rm T} = -1.5V, R_{\rm L} = 15k\Omega$		+125(+0-3)	-300	1	
			YI - 1.5 Y, NL 15882		-55(+5-0)	-300	1	
				R	$+22\pm3$	-110	1	
			1	К	+ 22=3	-110	1	

Electrical DC characteristics within operating temperature range Notes (1) (2)

The following conditions apply, unless otherwise specified +Vcc = +5V, -Vcc = 0V, +Vin = 0V

Table 3 (Continued)

		Test			Lir	nits	_
Parameter	Symbol	Method MIL-STD 883	Conditions	TA, °C	Min	Max	Units
Input	I _{IO}	4001	$+V_{CC} = +30V, -V_{CC} = 0V, V_L = +30V,$	+22±3	-25	25	nA
Offset			$V_T = +1.5V, \ R_L = 15k\Omega$	+125(+0-3)	-100	100	
Current				-55(+5-0)	-100	100	
			R	+22±3	-111	111	
			$+V_{CC} = +2V, -V_{CC} = -28V, V_L = +2V,$	+22±3	-25	25	
			$V_T = -26.5 V, \ R_L = 15 k \Omega$	+125(+0-3)	-100 -100	100 100	
			R	-55(+5-0) +22±3	-100	100	-
			$+V_{CC} = +5V, -V_{CC} = 0V, V_L = +5V,$	$+22\pm3$ +22 ±3	-25	25	
			$V_{T} = +1.5V, R_{L} = 15k\Omega$	+125(+0-3)	-100	100	
			$v_1 = \pm 1.5 v_1$, $N_L = 15 K S 2$	-55(+5-0)	-100	100	
			R	+22±3	-111	111	
			$+V_{CC} = +2V, -V_{CC} = -3V, V_L = +2V,$	+22±3	-25	25	
			$V_{\rm T}$ = -1.5V, $R_{\rm L}$ = 15k Ω	+125(+0-3)	-100	100	
				-55(+5-0)	-100	100	1
			R	+22±3	-111	111	
Power	Icc	4005	$+V_{CC} = 30V, -V_{CC} = 0V, Vin_{+} = +1.0V,$	+22±3	-	2	mA
Supply			Vin- = 0V, $R_L = \infty$	+125(+0-3)			
Current				-55(+5-0)			
			$+V_{CC} = 36V, -V_{CC} = 0V, Vin_{+} = +1.0V,$	+22±3	-	2	
			Vin- = 0V, $R_L = \infty$	+125(+0-3)			
				-55(+5-0)			
			$+V_{CC} = 5V, -V_{CC} = 0V, Vin_{+} = +1.0V,$	+22±3	-	2	
			Vin- = 0V, $R_L = \infty$	+125(+0-3) -55(+5-0)			
Voltage	Av	4004	$+V_{CC} = +15V, -V_{CC} = 0V, V_L = +15V,$	+22±3	50	-	V/mV
Gain			$V_{T1} = +1V, V_{T2} = +11V, R_L = 15k'\Omega$	+125(+0-3)	25	-	
				-55(+5-0)	25	-	
Output Sink Current	Isink	3011	+Vcc = +5V, -Vcc = 0V, Vo = 1.5V, Vin ₊ = 0V, Vin- = +1V	+22±3	6	-	mA
Common	CMRR	4003	Measurement V ₀₁ :	+22±3	70	-	dB
Mode			$+V_{CC} = +5V, -V_{CC} = 0V, V_L = +5V,$				
Rejection Ratio			$V_T = +1.5V, R_L = 15k\Omega$ Measurement V_{02} :	+125(+0-3)	60	-	
			$+V_{CC} = +2V, -V_{CC} = -3V, V_L = +2V,$	-55(+5-0)			
			$V_T = -1.5V, \ R_L = 15k'\Omega$				
			Measurement V ₀₃ :	+22±3	70	-	
			$+V_{CC1} = +30V, -V_{CC} = 0V, V_L = +30V,$				
			$V_T = +15V, R_L = 15k\Omega$ Measurement V_{04} :				
			$+V_{CC} = +1.5V, -V_{CC} = -28.5V, V_L = +1.5V,$				
			$V_{\rm T} = -13.5V, R_{\rm L} = 15k\Omega$				
			Measurement V_{03} : + $V_{CC} = +30V$, - $V_{CC} = 0V$, $V_L = +30V$,	+125(+0-3)	60	-	
			$V_{\rm T} = +15V, R_{\rm L} = 15k\Omega$	-55(+5-0)	1		
			Measurement V_{04} :	-55(+5-0)			
			$+V_{CC} = +2V, -V_{CC} = -28V, V_L = +2V,$				
			$V_{\rm T} = -13V, R_{\rm L} = 15k\Omega$				
			$r_1 = 15 r_1 r_1 r_2 r_2 r_2 r_2 r_2 r_2 r_2 r_2 r_2 r_2$				

Electrical DC characteristics within operating temperature range Notes (1) (2)

The following conditions apply, unless otherwise specified +Vcc = +5V, -Vcc = 0V, +Vin = 0V

Table 3 (Continued)

		Test	t		Li	mits	
Parameter	Symbol	Method MIL- STD 883	Conditions	TA, °C	Min	Max	Units
Power Supply Rejection Ratio	PSRR	4003	$\begin{split} \text{Measurement } V_{03}\text{:} \\ + V_{CC} &= +30 \text{V}, - V_{CC} &= 0 \text{V}, \ V_L &= +30 \text{V}, \\ V_T &= +1.5 \text{V}, \ R_L &= 15 \text{k}\Omega \\ \text{Measurement } V_{04}\text{:} \\ + V_{CC} &= +5 \text{V}, - V_{CC} &= 0 \text{V}, \ V_L &= +5 \text{V}, \\ V_T &= +1.5 \text{V}, \ R_L &= 15 \text{k}\Omega \end{split}$	+22±3	60	-	dB
Saturation	Vsat	3007	$+V_{CC} = +5V, -V_{CC} = 0V,$	+22±3	-	400	mV
Voltage			$Vin_{+} = 0V, Vin_{-} = +1V, Io = 4mA$	+125(+0-3)	-	700	
				-55(+5-0)			
Output	I _{CEX}	4001	$+V_{CC} = +30V, -V_{CC} = 0V, V_L = +30V,$	+22±3	-	1.0	μΑ
Leakage			$Vin_{+}=+1.0V, Vin_{-}=0V$	+125(+0-3)			
current				-55(+5-0)			
Common mode voltage range (note 4)	V _{CM}	4003		+22±3	0	+Vcc -1.5	V
				+125(+0-3) -55(+5-0)	0	+Vcc -2.0	
Input Leakage Current	±I _{IL} (Vdiff)	4001	$+V_{CC} = +30V, -V_{CC} = 0V, V_L = +30V,$ Vin- = 0V, Vin+ = +36V	+22±3 +125(+0-3) -55(+5-0)	-	500	nA
(Differential Input Voltage)			$+V_{CC} = +30V, -V_{CC} = 0V, V_L = +30V,$ Vin- = +36V, Vin+ = 0V	+22±3 +125(+0-3) -55(+5-0)	-	500	nA
(note 5, 6)			$+V_{CC} = +5V, -V_{CC} = 0V, V_L = +5V$ Vin- = -0.3V, Vin+ = +30V	$+22\pm3$ +125(+0-3) -55(+5-0)	-	500	nA
			$+V_{CC} = +5V, -V_{CC} = 0V, V_L = +5V$ Vin- = +30V, Vin+ = -0.3V	+22±3 +125(+0-3) -55(+5-0)	-	500	nA

Notes:

(1) Post irradiation limits are identical to those listed under DC and AC electrical characteristics except as listed in the line denoted "R" (correspond to 100 krads (Si)) of "Conditions" section Table 4(a). Radiation end point limits for the noted parameters are ensured only for the conditions as specified in ESCC 22900.

(2) Low dose rate testing should be perform on a wafer-by-wafer basis, per ESCC 22900 p.5.2, with no enhanced low dose rate sensitivity (ELDRS) effect.

(3)The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.

(4) The upper end of the common mode voltage range is +Vcc -1.5 V for $T_A = +22\pm3^{\circ}C$ or +Vcc - 2.0 V for $T_A = +125(+0-3)^{\circ}C$ and $T_A = -55(+5-0)^{\circ}C$. Parameter V_{CM} is estimated by measuring of CMRR (FIGURE 8(f))

(5) Parameter V_{Diff} is evaluated by measuring of $\pm I_{IL}$ and the value for V_{Diff} is not data logged during Read and Record.

(6) Either or both inputs can go from -Vcc - 0.3V to +30 V dc without damage independent of the magnitude of +Vcc. This is assessed by measuring of input leakage current.

Electrical AC characteristics within operating temperature range Notes (1) (2) (3) (4) Table 4

The following conditions apply, unless otherwise specified +Vcc= +5V, -Vcc=0V

Parameter	Symbol	Test Method MIL-STD 883	Conditions	T _A ,° C	Min	Max	Units
Response Time (Low to High),	t _{RLH}	A(YY)	Vin = 100mV, RL = $5.1K\Omega$, V _{OD} = 5 mV , C _L = 50pF Vin = 100mV, RL = $5.1K\Omega$, V _{OD} = 50 mV ,			5.0 0.8	
notes $(3)(4)$			$C_L=50pF$ R	$+22\pm3$	-	1.0	μs
Response Time (High to Low), notes (3) (4)	t _{RHL}					2.5 0.8	

Notes:

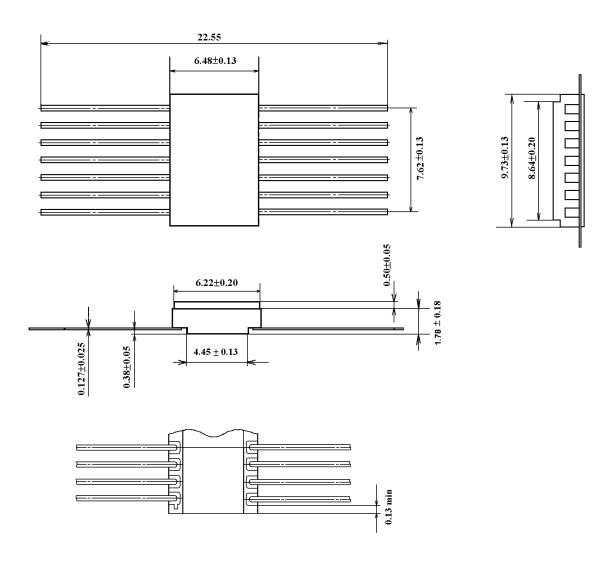
(1) Post irradiation limits are identical to those listed under AC and DC electrical characteristics except as listed in the line denoted "R" (correspond to 100 krads (Si)) of "Conditions" section Table 4(b). Radiation end point limits for the noted parameters are ensured only for the conditions as specified in ESCC 22900.

(2) Low dose rate testing should be perform on a wafer-by-wafer basis, per ESCC 22900 p.5.2, with no enhanced low dose rate sensitivity (ELDRS) effect.

(3) Adjust the signal generator so that Vin is a 100mV pulse train with a 10µs pulse width at 50kHz,

Tr and Tf < 10ns and Zo = 50Ω

(4) All resistor tolerances are $\pm 1\%$ and all capacitor tolerances are $\pm 10\%$



Physical Dimensions

Figure 3

14-lead ceramic flatpack dimensions

All RD ALFA Microelectronics semiconductor products are manufactured, assembled and tested under ISO9001 quality systems certification.

RD ALFA Microelectronics products are sold by description only. RD ALFA Microelectronics reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by RD ALFA Microelectronics is believed to be accurate and reliable. However, no responsibility is assumed by RD ALFA Microelectronics or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of RD ALFA Microelectronics or its subsidiaries.

For information regarding RD ALFA Microelectronics and its products, see web site http://www.rdalfa.eu